

7/12/24 F.W

Roll No.

--	--	--	--	--	--	--	--	--	--

ANNA UNIVERSITY (UNIVERSITY DEPARTMENTS)
B.E/ B.Tech (Full Time) END SEMESTER EXAMINATIONS – NOV / DEC 2024

ELECTRONICS AND COMMUNICATION ENGINEERING

Semester – V

EC5503 – CONTROL SYSTEMS ENGINEERING

Allowed to use Polar Graph, Semi-Log Graph, and Plain Graph Paper

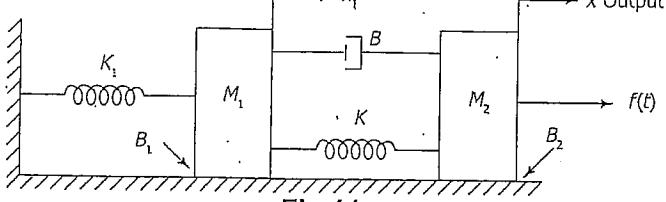
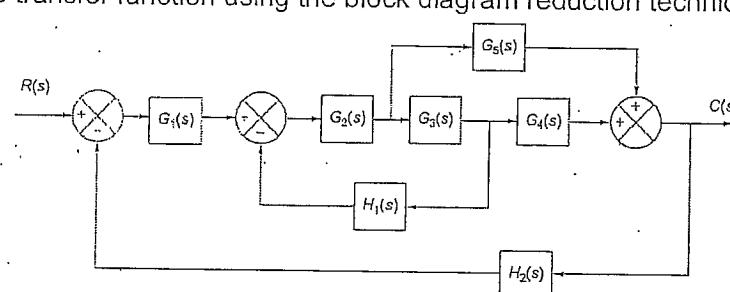
(Regulation 2019)

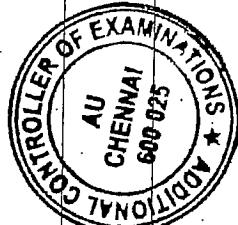
Time: 180 minutes

Answer ALL Questions

Max. Marks : 100

CO 1	Ability to comprehend the systems components and their representation using various control system
CO 2	Ability to compute the steady-state response using various time domain parameters for various system
CO 3	Ability to analyze the frequency response characteristics for both open loop and closed loop system
CO 4	Ability to analyze the stability of various systems using Routh Hurwitz Root locus techniques
CO 5	Ability to illustrate the state space model of various control system

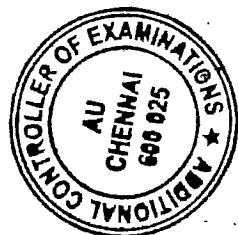


BL – Bloom's Taxonomy Levels


(L1 - Remembering, L2 - Understanding, L3 - Applying, L4 - Analysing, L5 - Evaluating, L6 - Creating)

PART- A (10 x 2 = 20 Marks)

Q. No	Questions	Marks	CO	BL
1	Define transfer function.	2	1	2
2	Draw the signal flow graph for the following set of algebraic equations. $y_2 = ay_1 - gy_3$; $y_3 = ey_2 + cy_4$; $y_4 = by_2 - dy_4$	2	1	2
3	How is the system classified depending on the value of the damping?	2	2	2
4	What is a dominant pole?	2	2	2
5	Why are compensators used in control systems?	2	3	2
6	How do gain and phase margins relate to system stability?	2	3	2
7	A unity feedback system has open loop poles $(-2 \pm j2)$ and 0. It has a single zero at $(-4 \pm j0)$. Find the angle of departure of the root locus branch starting from the pole $(-2 - j2)$.	2	4	3
8	For what range of K the system shown in fig.8 is asymptotically stable?	2	4	2
9	What are the advantages of state variable analysis?	2	5	2
10	What is meant by controllability and observability?	2	5	1

PART- B (5 x 13 = 65 Marks)


Q. No	Questions	Marks	CO	BL
11 (a)	<p>Obtain the transfer function of the mechanical system shown in Fig.11a and draw its analogous circuit.</p> <p>Fig.11a</p>	13	1	3
11 (b)	<p>For the block diagram of the system shown in Fig.11b, determine the transfer function using the block diagram reduction technique.</p> <p>Fig.11b</p>	13	1	3
12 (a)	<p>The open-loop transfer function of a system is $G(s) = \frac{K(s+2)}{s^2(s^2+7s+12)}$ and it has a feedback with a transfer function of $H(s)=1$. Determine the i) type of system, ii) error constant K_p, K_v, and K_a, and iii) steady-state error for parabolic input.</p>	13	2	3
12 (b)	<p>A unity feedback control system has an open loop transfer function, $G(s) = \frac{10}{s(s+2)}$. Find the rise time, percentage overshoot, peak time, and settling time for a step input of 12 units.</p>	13	2	3
13 (a)	<p>The loop transfer function of a certain control system is given by $G(s)H(s) = \frac{50}{(s+1)(s+2)}$. Sketch the Nyquist plot and examine the stability of the system.</p>	13	3	3
13 (b)	<p>The loop transfer function of a unity feedback system is given by $G(s)H(s) = \frac{(s+2)}{s^2(s+1)(2s+1)}$. Sketch the polar plot for the system.</p>	13	3	3
14 (a)	<p>The open-loop transfer function of a unity feedback system is given by $\frac{K}{(s+2)(s+4)(s^2+6s+25)}$. By applying the Routh-Hurwitz criterion, discuss the stability of the closed-loop system as a function of K. Determine the value of K which will cause sustained oscillations in the closed-loop system. What are the corresponding oscillation frequencies?</p>	13	4	5

14 (b)	A unity feedback control system has an open-loop transfer function $G(s) = \frac{K}{s(s^2 + 4s + 13)}$. Draw the root locus as the value of K changes from 0 to ∞ . Also, find the value of K and the frequency at which the root loci crosses the $j\omega$ axis.	13	4	5
15 (a)	Consider the system defined by $\dot{x} = Ax + Bu$ $y = Cx$ where, $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}$, $B = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$, $C = \begin{bmatrix} 10 & 5 & 1 \end{bmatrix}$ Check the system for (i) complete state controllability and (ii) complete observability	13	5	3
OR				
15 (b)	Obtain the transfer function for the state-space representation of a system given by $\begin{bmatrix} \dot{x}_1(t) \\ \dot{x}_2(t) \\ \dot{x}_3(t) \end{bmatrix} = \begin{bmatrix} -2 & 1 & 0 \\ 0 & -3 & 1 \\ -3 & -4 & -5 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} u(t)$ $y(t) = \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \end{bmatrix}$	13	5	2

PART-C (1 x 15 = 15 Marks)

Q. No	Questions	Marks	CO	BL
16	For the following transfer function draw the Bode plot and obtain the Gain crossover frequency, Phase crossover frequency, Gain Margin, and Phase Margin. $G(s)H(s) = \frac{20}{s(1+3s)(1+4s)}$	15	5	5

